
AD-A112 325 NAVAL COASTAL SYSTEMS CENTER PANAMA CITY FL F/6 12/1
AN OUTLINE OF THE TRANSITION PROBABILITY FUNCTION APPROACH TO S--EC(U)
FEB 82 J A RENEKE

UNCLASSIFIED MCSC-TN339-82 SBI-AD-F200 020

-EEl/I/IEEEEE
ii//////482



1111111.0.2
~ 36

1111IL25

MICROCOPY RILSOLUTION I SI CHART



TECHNICAL

MEMORANDUM

NCSCTM 339-82

FEBRUARY 1982

S.AN OUTINE OF THE TRANSITION

-PROBABILITY FUNCTION APPROACH
TO STOCHASTIC SYSTEMS

JAMES A. RENEKE

8

A prod Sfr pu AW

ACTAL SYSTEMS CENTENc4
PANAMA CITY, PLFtOA 32407 I

DI
ELECTE

* MAR 12 198

c0PY 2 4 8203 12 A0



NCSC IX 339*-62

NAVAL COASTAL SYSTEMS CENTER

PANAMA CITY, FLORIDA 32407

iCAPUT RAMOND D. NNEIT, USE LIV C. mULoWC

culummimgto Taf.,t ludg

AMINISTRATIVI INFORMATION

S., This report was written by James A. Reneke, Clemson University, South

Carolina, while at JCSC under the 1981 Navy-ASM Summer Faculty Research
Program sponsored by OUR. Work was related to Code 795's research in the
areas of parameter estimation, control system design, and nonlinear stochastic
system analysis. The work was performed in the period May to August 1981.
Further information may be obtained from Gerald Dobeck, Code 795, ICSC.

Released by Under authority of
Z. H. Freeman, Acting lead M. J. Wynn, Head
Systems Science Division Coastal Technology Depart&ent
February 1982

gif



UNCT.ARS5TFI~ft
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NCSC TM 339-82 ?/2!5 i
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED/
An Outline of the Transition Probability
Function Approach to Stochastic Systems s. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) 3. CONTRACT OR GRANT NUMBER(a)

James A. Reneke

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Naval Coastal Systems Center

Panama City, FL 32407

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

February 1982
1 3'. NUMBER OF PAGES

32
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of thie report)

UNCLASSIFIED

aS. DECLASSIFICATION/DOWNGRADING
SCHEDULE N/A

1S. DISTRIBUTION STATEMENT (of thl Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebetrect entered In Block 20, If different from Report)

1. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aIde If neceeeam a" Identify by block number)

Stochastic Process; System Identification; Qualitative Analysis ability
Density Functions; Control Systems; Markov Processes; Partial D: tal
Equations; Noise; Estimation; Equations; Transition Probability; ko. ,orov
Equation; CSTV (Control System Test Vehicle);

20. ABSTRACT (Continue on reverse aide I necessary and Idenlify by block number)

Problems of estimation, control, and qualitative analysis for noisy engineer-
ing systems can be approached either from the sample path or the transition
probability function perspective. The second approach is outlined in this
report in a series of examples with enough theory to make the material self
contained. Special attention is given the relationship between engineering
models and Kolmogorov's partial differential equations.

DO Io', 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

S/N 0102- LF-014-6601 SECURITY CLASSIFICATION Of THIS PAGE (l1n Dole, ntieed)

-J



NCSC TM 339-82

TABLE OF CONTENTS

Page No.

SECTION I -INTRODUCTION................... . . ... . . . .. .. .......

OBJECTIVES................... . . ..... . .. .. .......

ORGANIZATION........................2

* SECTION II -BACKGROUND..........................2

TRANSITION PROBA13ILITY FUNCTIONS ................ 2

SAMPLE PATH VERSUS TRANSITION PROBABILITIES .... 4

SECTION III -THE PARTIAL DIFFERENTIAL EQUATIONS OF KOLMOGOROV. 5

RELATING THE TWO APPROACHES. .................. 5

WELL POSED PROBLEMS. .. ....................

ASYMPTOTIC RESULTS .................... 13

SECTION IV -SYSTEM IDENTIFICATION. ..................... 16

DEVELOPMENT OF LINEAR RELATIONS .. .............. 16

EXAMPLES OF FLOWS WITH POTENTIALS .. ............. 20

SECTION V -QUALITATIVE ANALYSIS. ...................... 21

MULTIPLE MODES ........................ 21

FIRST PASSAGE TIMES. ................... 22

SECTION VI -CONTROL PROBLEMS ...................... 25

FEEDBACK CONTROL ....................... 25

APPENDIX A -THE LINEAR RELATIONS FOR THE PARAMETERS IN
TERMS OF THE MOMENTS....................A-1



NCSC TM 339-82 ,A. -s=iMn For

SECTION I

INTRODUCTION

OBJECTIVES

Problems of estimation, control, and qualitative analysis for noisy
engineering systems are central to the Control System Test Vehicle (CSTV)
project. The work was concerned with an approach to these problems via
the transition probability perspective which has promise for some problems
which fall outside the domain of the linear-quadratic-Gaussian techniques.
In particular, the methods are applicable to the nonlinear models of the
CSTV.

The relevant part of the literature on Markov processes is unusually
profound, requiring knowledge of probability theory and dynamical systems.
This report attempts to explain that part of the theory which is applicable
to the CSTV models by considering a series of examples and special cases.
For instance, the general theory treats the model

dX(t) = b[X(t)] dt + a[X(t)] dW(t)

with the Ito integral as opposed to the Riemann integral of ordinary calculus
because o(x) depends on the state.1 The coefficient o(x) is constant for the
CSTV models affording a great simplification. We will only treat this special
case.

The transition probability approach is relevant in that it allows for
refinements in current techniques; i.e., in estimating the steady-state dis-
tribution of the state vector, in nonlinear parameter estimation, and in
control. These refinements are important because the nonlinear models
might exhibit complex behavior such as multiple modes with a resultant
quasi-periodic motion which cannot be dealt with using the LQG techniques.

The material in this report is presented informally in terms of
examples with the intention of illustrating the nature of the problems
and techniques of solution; we are trying to present an outline or. road
map rather than a detailed survey.

lGelb, A. (Ed), Applied Optimal Estimation, The M. I. T. Press, 1974.
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ORGANIZATION

Section II begins with a discussion of the general mathematical back-
. Fground. Since we will consider a part of the general theory of Markov

processes, we will attempt to define the distinctions betwecn the two
approaches to Markov processes; i.e., the sample path approach to whLch
engineering models most naturally belong and the transition probability

* -' approach.

The partial differential equations of Kolmogorov which are of particu-
lar mathematical importance in this report are discussed in Section 1I1. A
brief derivation of the equations and a discussion of the relationship between
the partial differential equations and stochastic differential equations (the
engineering models) are included. The problems of existence of solutions
(well posedness) and asymptotic results are mentioned.

The problems of parameter estimation, the most developed application
of the methods outlined in Section III, are discussed in Section IV. Sec-
tion V discusses the qualitative analysis of noisy system and Section VI
the control of noisy systems.

SECTION II

BACKGROUND

TRANSITION PROBABILITY FUNCTIONS

In systems theory, the study of a system most often begins with a
model, typically X = AX + BU. In the theory of stochastic processes, some
of which have models of the form dX(t) = b[X(t)] dt + o dW(t), the study
is much more likely to begin with functions defined on the sample paths

{X(t),t>O}. For instance, the system concept of state (the Markov property:
given the present, the future is independent of the past 2 ) is defined in terms
of conditional distributions on {X(t),t>O} rather than as a property of some
model. Markov processes are usually described in the literature3 4 5 by
transition probability functions.

2Parzen, E., Stochastic Processes, Holden-Day, 1962.

3Dynkin, Y. B., Markov Process, Vols. I and II, Springer-Verlag, 1965.

4Fuller, W., An Introduction to Probability Theory and Its Applicatious,
Vol. I, Third Edition, John Wiley & Sons, 1968.

5Gikhman, I. I. and Skorohod, A. V., The Theory of Stochastic Processes,
Vol. I through III, Springer-Verlag, 1974, 1975, 1979.

2
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A function P(E,tlxt 0) is a transition probability function on a Mdrkov

process [X(t),t>O} provided P(E,tfx't0 ) is the conditional probability that

X(t) belongs to E, given that at time t0 < t we have X(t0 ) x. The process

is stationary or homogeneous in time if P(Etix, t0) = P(Et-t0ix,O). We

are only concerned with this case and write P(E,tlx) in the place of P(E,tlx,O).

The transition probability function satisfies the Chapman-Kolmogorov
equation

* P(E't + SIX) fn P(E,tly) P(dy, six).
Rn

If a transition density p(y,tlx) exists, i.e., if P(E,tlx) = f p(y,tlx)dy,

then E

p(y,t + six) = 1n p(ytlz) p(z,slx) dz.

* R

Note that if p(-,tlx) is known for 0 < t < z, then p(.,tlx) can be found for

all t by iterating. Under suitable continuity conditions and with proper
interpretations p(*,Olx) and 8/8t(p(-,tIx))t=0 completely determine p(',tx)

for all t.7 Furthermore, p(',Olx) is always the same; viz, p(y,Oix) = 6(y-x).

There is extensive literature on Markov processes dealing with both the
mathematical foundations and applications. The literature can be considered
to be composed of three parts.

2

1. The study of time dependent behavior: to find the transition
probability function by finding and solving (differential,

integral, or other functional) equations which is satisfies.

2. The study of long run behavior: to find conditions under which
a steady state exists; i.e., lim P(E,tlx) = i(E).

3. The study of the qualitative behavior: to examine the proba-
bility distribution of the amount of time the system spends in
various states

2ibid.

6Arnold, L., Stochastic Differential Equations: Theory and Applications,
Interscience, 1974.

7Wong, L., Stochastic Processes in Information and Dynamic Systems, McGraw-

Hill, 1971.

3
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and the length of time required for the system to pass from one set of states
to another.

The first two areas will be discussed in Section III and the third area in
Section V.

The transition probability function approach to engineering problems can
be justified in three ways.

1. This approach provides a distinctive modeling technique.

2. The models are deterministic dynamical systems which allow
for application of classical methods.

3. This approach leads to more sophisticated models than the
sample path approach.

SAMPLE PATH VERSUS TRANSITION PROBABILITIES

One approach to modeling engineering systems operating in noisy environ-
ments or systems for which only noisy measurements can be made is to modify
deterministic models, i.e., differential equation models assuming complete
knowledge, by replacing parameters with stochastic processes to obtain sto-
chastic differential equations.8 There is a lot of flexibility in this approch
even if it is restricted to the Wiener process (the "derivative" of a Wiener
process is white noise) or to processes obtained from a Wiener process. There
is some controversy in the literature on the appropriateness of the resulting
models,8 9 but the issues of the controversy do not seem to apply to the CSTV
models. For our models, the noise terms are state independent.

One approach for obtaining transition probability models begins with a
discrete model and produces the final model through a limit. The canonical
example of this approach is the diffusion equation model of Brownian motion
obtained from a random walk model. 10 Another example is that of a population
model obtained from a discrete birth/death process model.1 1 There is a feel-
ing in this approach that the discrete model is "microscopic" and the con-
tinuous model obtained as a limit is "macroscopic." We will see in Section III

8McShaie, E. J., Stochastic Calculus and Stochastic Models, Academic Press,
1974.

9Gray, A. H. and Caughey, J. K., A Controversy in Problems Involving Random
Parametric Excitation, J. Math and Phys., 44 (1975), pp. 288-296.

1°Wax, N., Selected Papers on Noise and Stochastic Processes, Dover Publica-
tions, 1954.

"Bartlett, M. S., Stochastic Population Models in Ecology and Epidemiology,

Methune, London, 1960.

4
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how to relate the stochastic differential equation models with the transition
probability models.

The stochastic differential equation models are often nonlinear. Although
we have satisfactory computational methods for models which are linear, methods
for the nonlinear models are much less developed.' Often our only option in
analyzing these nonlinear models is simulation. While simulation is a powerful
technique, it is cumbersome. On the other hand, the transition probability
models are deterministic dynamical systems. Frequently, the resulting model
is a parabolic or elliptic partial differential equation of a type that has
been studied for decades and for which numerical methods are highly developed.

12

The transition probability approach requires a lot of mathematical sophis-
tication. Many deep results from analysis, probability theory, and dynamical
systems are called on. However, the resulting models and analysis are both
very elegant and powerful.

Finally, the literature seems to be divided into two camps: those iden-
tified with the sample path approach and those identified with the transition
probability approach. Since both approaches are attacks on the same problem,
the analysis of noisy systems, we should be able to make use of both.

SECTION III

THE PARTIAL DIFFERENTIAL EQUATIONS OF KOLMOGOROV

RELATING THE TWO APPROACHES

Suppose that dX(t) = b[X(t)] dt + o dW(t); i.e.,

t+At
X(t + At) - X(t) = f b[X(s)] ds + a [W(t + At) - W(t)]

t

= b[X(t)] At + a [W(t + At) - W(t)].

Then

E[X(t + At) - X(t)] = Eb(X(t)1
At

= f b(y) p(y,tlx)dy,

lZBers, L., John, F., and Schechter, M., Lectures in Applied Mathematics,

Vol. III, Partial Differential Equations, Interscience, 1964.

5
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where te(t, t + At) and X(t) = x. Hence,

E L~t At - ~t) - b(x) as At *0.

t

* Also,

E((X(t + At) - X(t) [X(t + At) - X(t))

E(b[X(t)] b[X(t)]T ) (At)2 + E(b(X(t))(W(t + At) - W(t))) oAt

+ 02 E([W(t + At) - W(t)] [W(t + At) - W(t)]T).

Hence
.{X(t At) - X(t)J [X(t + At) - 0Ts

E([xt +At)At)]T) a 2 as At 40.

Note that

_At)f - (y - x) p(y,Atlx)dy

and

E([X(t + At) - X(t)][X(t + At) - X(t)J T)

At

A f  (y - x)(y - X)Tp(y,Atlx) dy.

This computation leads to the following definition.1 3  A Markov process
{X(t), t > O} with continuous sample paths is called a diffusion process

14

if its transition density p(y,tlx) satisfies for 6>0 as tO0
1

1. 1 f p(y,tlx) dy-*O

ly-xl>z

2. f (y - x)p(y,tlx) dy + b(x) (drift)

13Kolmogorov, A., Uber die Analytische Methoden in der Wahrscheinlich-
keitsrechnung, Math. Ann. 104, pp. 415-458, 1931.

14Stroock, D. and Varadhau, S. R. S., Diffusion Processes with Boundary Con-
ditions, Comm. Pure Appl. Math., 24(1971), pp. 147-225.
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and

3. S y-x)y- p(y,tlx) dy -a(x) (dispersion).

We are concerned with diffusions for which the dispersion coefficient
is not state dependent; i.e., a~x) is constant. However, for the moment

y let us consider the general one-dimensional case.

For sufficiently nice functions f(x), we have

00

u(t,x) f f(y) p(y,tlx) dy
-00

which is defined for all t>O and -- x < 00. We want to show that u solves

the backward tequation
13

5-u ax

u(O,x) = f(x).

Recalling"5 the Chapman-Kolmogorov equation

0

p(y,t + Atix) =f P(y,tlz) p(z,Atlx) dz
-0

we have

00

u(t + At,x) -u~t,x) f f(y) J f p(y,tI z)p(z,At x) dz -p(y,tI x)) dy
-00 -00

0 0

f f(y)I f 1 p(y'tjx) + ap(y,tlx) (z - X)
-00 -00

+ a (~ )( - X)2 + O(jz -X1
2)) p(z,Atlx) dz - p(y,tjx)) dy

13 ibid.

"5Brannan, 3., Classroom Notes, Department of Mathematical Sciences,
Clemson University, 1980-81.

7
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00 OD

f f(y)[f (z - x)p(z,At Ix) dz axy~.~

-00 O

+ f (Z X- p (z,At ix) dy ~a~, xaxI2

-00

+ f O(Iz. X12) p(z,At Ix) dz) dy.
-00

Hence

00
uct + At,x) -u(t,x) £fybx)ap(y,tlx) +a2 u(v~tIx)

At ax ax a2)d

as At -> 0.

On the other hand,

au(tx) - 0 ap(y,tjx) d
ax f ~) ax d

-00

and

a2U(t X) 00 ap (y tix)
3X f f~y ax dx.

-00

Therefore

at(t,x) b(x) - (t,x) + ka(X) 32 CtX).

Since p(Y,0lx) =6(y - x) we also have u(O,x) = f(x). The name "backward
equation" evidently comes from the fact that y and t are held constant and
we are looking backward in time to differentiate p(y,tjx) with respect to
x.1

The general backward equation of Kolmogorov is

au n 02Un au
ati~~j~ axax. + .1 b (x) .

u(0,x) =f(x).

Isibid.

8
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The probabilistic interpretation of u is that u(t,x) is the expected value
of f(X(t)) given that X(O) = x.

We proceed now with the forward equation."5  F.)c the backward equation
the n-dimensional case is essentially the same as the one-dimensional case.
For the forward equation the n-dimensional case is essentially the same as
the two-dimensional case. So we consider n = 2.

For a sufficiently nice function u (z) = uo(ZlZ from R to R1 the
Chapman-Kolmogorov equation yields

f f u0 (z) p(z,t + Tjx) dz dz 2

OD Go 0 00

= f f f f uo(Z) p(z,tly) p(y,Tjx) dyldy 2 dzldz2

0 10

= f f u(t,y) p(y,rIx) dy 1 dy 2 ,
-00 -0

where

u(t,y) = f f uo(z) p(z,tly) dz dz 2 .
-00 -0

Further,

0 0a
- f f Uo(Z) p(z,t + Tix) dz dz

at 00-00 --D

= 5 . Uo(Z) -2 p(z,t + Tix) dz dz
-00 -0

0D 0

= f f u 0 (Z) T- p(z,t + Tix) dz dz
-0 -D

a

f f - u(t,y) p(y,Tlx) dy dy 2

oa. (y) a2u(ty) 2 au(t p(
f ( I aij(Y 4ayy + I.. b j ay. p~y,T1x, yId

- - i ,j=l lj a i j=l y dl1

Isibid.

9
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We next apply integration by parts which tuir vach i and jyields

00 00

f f a. .(y) 2 ) p(y,Tlx) dy dy2

f 13 (Y) M ty ) P(, )y.j CI
-j ay,1x IY -,

OD

f . - 7- (a..(y)p(y,Tlx)dyj dy.

J uy) a jI) y. 00
= - J{u~y~) y.- (a..y)p(y,ij) ~'

-fa uyL j (a yPyTxdi y
00 ii

f _f u(y,t) a-- a- (a.i .(y)p(yTx)) dy~dy 2
-00 00 1 1

A similar process yields for each j

00 00

d f b.(y) - u(y,t)p(y,TIX) dy dy~

-0 - 00

f f -A (b.(y)p(y,Tlx)) dy dy2
-00 -40 a3 1

t So we have

f D (Y) wt p(yt + tilx) dy dy 2
-00 -00

CO 00 2 a
f f U(t,y) Ik I (a. .(y)p(y,rIX))

-00 -C ~ , jl 31 3 y j

2
- 7 (b.(y)p(y,Trx))} dy dy2
j=l aji i

As t 0, u(t,y) u 0 (y). Hence

10
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2
f f u 0 (y){3 P(YIlx) - I (a ij(Y)p(y,Tlx))

-0 -0 i,j=l

. - (b(y)p(y,TIlx))} dyldy2 = 0j ay.j

for all sufficiently nice uo(y); i.e., the density must satisfy the forward
equation of Kolmogorov'

3

-"2 a 2

at P(Ytlx) = ayY (aiJ(Y)P(Ytix))

- (b.(y)p(y,tlx))

j-1 ay j

p(y,O X) = 5(y - x).

WELL POSED PROBLEMS

For both the forward and backward equations we have only imposed initial
conditions which, in general, are not sufficient to assure a unique solution.

12

We must introduce either boundary conditions or some other condition in the
absence of a boundary to match up a solution of the PDEs with the stochastic
differential equation. This report treats in detail only examples from the
no-boundary case.

The best introduction to the problem of appropriate boundary conditions
is Feller's paper on one-dimensional diffusions. 4 16 The scope of the prob-

lems is discussed here.

Consider the problem of modeling a constrained pendulum; i.e., a simple
pendulum with a tagline limiting the pendulum's arc. On the free portion of
the arc the system might be modeled by

x + ax + bx = f(t)

x > xo,9

12ibid.

13ibid.

14ibid.

16Feller, W., Diffusion Processes in One Dimension, Trans. Amer. Math. Soc.,
77(1954), pp. 1-31.

11

- - ".. ..... . .. ... .. .. ... . .. .. .. ... . . " 'f . . .... . -- ' -I . . . . . . .. . Ill



NCSC TM 339-82

where f(t) represents an exogenous disturbance. Iii vector io,1rm the model
becomes

_b -a F~

Ix I(t) > x-*' 1 0

Modeling the disturbance as white noise the stochastic differettial equation
becomes

dX(t) = BX(t) dt + a dW(t)

where

B 1 and o 0 0]

The backward equation is

au 1  2
2 u au

a_ 2 +x -- (bx + ax2)
at x- ax 1 2 x2 1 2

The model is obviously incomplete since we have not specified what
happens on the boundary x I = x . If we want to model the process as a

diffusion, then the boundary must be modeled as an absorbing, reflecting,
or elastic barrier, or the process at the boundary must be modeled as an
elementary return process. 16 We stop here, but the point to be made is
that the theory includes a very rich class of models.

We are getting very deep into the theory of dynamical systems; however,
we must continue a bit further to get a feeling for how all of the pieces

fit together. Recall the relation

u(t,x) f f~y)p~y,tlx) dy.

00

ITtfl(x) = f f(y)p(y,tlx) dy
-00

Thus for each function f we can think of T tf as a fiuct ion; i.e., T t is a

function from some set of functions to a set of lunctions. Let us call this

t6 ibid.

12
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set G. So far each t, T is a function from G into G and {Tt,t > O is called
a semigroup.

17  t

The study of semigroups has a large literature in its own right. The
modern theory of Markov processes is largely semigroup theory.7 Of interest
to us is that the study of the forward and backward questions is subsumed
in semigroups and the problem of appropriate boundary conditions or other
conditions specifying the solution for the PDEs when the boundaries are
absent is translated into conditions on the space G1

ASYMPTOTIC RESULTS

The qualitative analysis of dynamical systems is largely the description
of the long term behavior of the system. For deterministic systems, this
involves the determination of the stable points of the system. The behavior
of stochastic systems is much richer; instead of stable points, we look for
steady-state distributions or densities. 18  Since we usually deal with systems
whose state vector takes on every permissible value infinitely often, we can-
not talk of stable points but only of the relative amount of time the state

*, vector is nearby some fixed point.

Obtaining asymptotic results for the backward equation seems to be easier
than for the forward equation. They can then be translated into results for
the forward equation. Furthermore, we seem to have a better idea of what to
look for; i.e., we want u(t,x) to approach a constant function as t 4 Co.
Therefore, the expected value of f(X(t)), as t - -, is independent of the
starting value of X(t), a reasonable way for physical systems to behave.

We only have partial results to report in this area, so treatment is
left a little skimpy. 19 However, the results do show in outline how semigroup
theory is used.

Consider the one-dimensional problem

au 82u u
it a(x) + b(x)

7 ibid.

12 ibid.

1 7 Curtain, R. F. and Pritchard, A. I., Infinite Dimensional Linear'Systems
Theory, Springer-Verlag, 1978.

I$Papanicolaou, G. C. and Kohler, W., Asymptotic Analysis of Deterministic
and Stochastic Equations with Rapidly Varying Components, Comm. Math. Phys.,
45 (1975), pp. 217-232.

19Brannan, J. and Reneke, J., Unpublished Research, 1981.

13
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on -00 < x< OD. We seek conditions on a(x) and b(x) which ensure that u(t,x)

has a constant limit as t - 00.

- 'One such set of conditions is:

1. a(x) and b(x) are continuous on (-cc) and a(x) > 0

for all x.

2. The function f(x) defined by

x
f(x) = exp(2 f b(s)/a(s) ds)/a(x)

0

is absolutely summable on (-, c); i.e.,

f If(x)ldx

exists and is finite. For example, if dX(t) = -X3 (t) dt + g dW(t),
then the expected value of X(t) as t is independent of X(O).

Let k and m denote the increasing functions defined on (-o, c), respec-

tively, by

t x
k(t) = f exp (-2 f b(s)/a(s) ds) dx

0 0

and

t x
m(t) =f 2 exp (2 f b(x)/a(s) ds)/a(x) dx.

0 0

Let G denote the complex valued functions f on (-a*, OD) such that each of

f Iff2 dm = f If(x)[ 2 m'(x) dx
-00 -0s

and

00 OD

f !dfl2 /dk = f If'(x)1 2 /k'(x) dx
-00 -Os

exists and is finite. Let <',*> denote the inner product defined on G by

<fh> f fhdm + f df dh/dIk.

14
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A consequence of the Hille-Yoshida Theorem1 is that we can define a
semigroup {Tt, t > 0) on G by [T tf](x) = u(t,x) provided

au 2u au
= a(x) ax2 + x)

u(O,x) =f(x).

(There is only one solution u(t,x) of the PDE such that u(t,') is in G for
* each t > 0.) Furthermore, <u(t,-), u~t,.)> < <f,f> for each t > 0; i.e.,

(t t > 0) is a contraction semigroup.

We can conclude, finally, that {T tf) has a limit in G as t 4 and that
the limit is constant. Lett

p(t,x) exp(2 *f b(x)/a(s) ds) u(t,x)
0

Then

p~tx)exp (2f b(s)/a(s) ds) ~-u(t,x),a(x) 0t

x
(a(x) p(t,x)) 2b(x) exp (2 f b(s)/a(s)) ds) u(t,x)
Bxa(x) 0

+exp (2 f b(s)/a(s) ds) T- u~t,x)
0

=2 b(x) p(t,x) + exp (2 f b(s)/a(s) ds) -u(t,x),

0

and

a2(a(x) p(t,x)) 2 -(xptx)

axf b(x)p tx))

+ 2 b~)exp (2 .f b(s)/a(s) ds) 5- u(t,x)

+ exp (2 f b(s)/a(s) ds) ax u(t,x).
0

171bid.
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at a2y(()~~) + ai. (b(x)p(t,x))

(s) pdt)x) - ~x)(abxXp)t~x)) s

a --- exp (2 f b(s)/a~s dsa- xtx h~~~~

-b(x) x a
a~)exp (2 f b(s)/a(s) ds) ~- u(t,x)

Xa 2  a
-~exp (2 f b(s)/a(s) ds) axL u(t,x) + -- (b(x)p(t,x))

0

-xp(2 f b(s)/a(s)ds) E)y u(t,x) - a(x) u(t~x)
a~x) 0

-b(x) a u(t'x)j =0.

Furthermore,

p~t~) ax) exp (2 f b(s)/a(s) ds)
0

as t -, 00 for some constant c.

SECTION IV

SY'iTEM IDENTIFICATION

* DEVELOPMENT OF LINEAR EQUATIONS

For the method of moments in its simplest formi, one tries to choose the
parameters so the model moments approximate the empirical moments. For the
method outlined here,19 we establish some relations, linear in the parameters,
which have model moments as coefficients. We then SUb)stitute the empirical
moments in place of the model moments and solve in a least squares sense for

* the parameter estimates. In the case of boundaries, the relations probably
will have to include some which are nonlinear.

* 19ibid.

16
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In this and the last section we will assume a two-dimensional model of

dX(t) dt((1) + e dW(t).

The linear model becomes

b 1x + b 12 Y] t+C WtdX(t) =Id Wt
[b2 1 x + b 2 2 yj

Further, we will assume that there is a steady-state density p and

iham x, p(x,y) =0 and lim y p(x,y) 0

uniformly on bounded sets for all i.

* * In general, we have (see Appendix A):

a2 82 9(b p) 8(bP)

which yields

x Y a2 x Y 2
0= n 2 f f S-4(u'v) dudv +l&2 f f-(uv ud

-Jx J uvud-f f(u,v) dudv
ax ay

f ~ f x ,v) ddv f f2 f (u, v) du d
ax0 -0 _D

y x

-_I b I(x,v) p(x,v) dv - f b 2 (u,y) p(u,y) du.
-0 -00

If we let y go to - and integrate with respect to x from -0to 0~we obtain

f f b (x,y) p(xy) dxdy =0
-W -00

Interchanging the roles of x and y yields

17
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f f b2 (x,y) p(x,y) dxdy = 0.

For i and j non-negative integers, let

mi.. = f f x'y3 p(x,y) dxdy.
13 - -00

In the linear case, the equations mo b + iolb 0 contain no information
10 u 01li2

since mO = = . However, we can repeat the above process, but first
multiplying by either x or y; i.e.,

x y a2 20OU (UV) + u 9-4(u,v)1 dudv

x y 8(blP) 8(b2P)
f f {u ax (u,v) + u y (u,v)} dudv

y x
E 2 I {x ax(x,v) - p(x,v)} dv + h & 2 f u 32(u,y) du

y x
- S {x bl(x,v) p(x,v) - f bl(u,v) p(u,v) dul dv

x
- f u b2 (u,y) s(u,v) du.
-00

Let y go to -. Then

0 &2 f Ix -(x,y) - p(x,y)} dy

x
- [ ix bl(x,y) p(x,y) - f bl(u,y) p(u,y) dul dy.

Integrating with respect to x from -m to m we have

18
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0 = E2 f f {x 2(x,y) - p(x,y)) dxdy

- £ f {x b1 (x,y) p(x,y) - f bl(u,y) p(u,y) du) dydx.

In the linear case this yields m20 b + M b = -E 
2 .

2 1111 12

On the other hand, if we let x go to - and integrate with respect to y
from -OD to 00 we obtain

0 = f f y b (x,y) p(x,y) dxdy + f f x b2 (x,y) p(x,y) dxdy.
-CD -00 -00 -Ca

In the linear case, m b + M b +20 b2 + m b =0.

i1 1 b11  "02 12 2021 11 22

* .As before, interchanging the roles of x and y we also obtain the equation

f f y b2 (x,y) p(x,y) dxdy = - 2

We can either use higher moments to obtain enough equations or some other
knowledge of the model. For instance, if the model is symmetric, i.e.,
b12 b21 we obtain the following system:

m 20 m11 0 0 b 11

n1 1 i 0 2 i 2 0  n11  b12  0

0 0 m I M2 b

0 .1 -1 0 b 0
L V 22 -

Example 1

Suppose I = 1 and the moments are given as m = M0 = O, M20
and ml = i0 2 = 1. The system above becomes

' 16 0 0 b 11  -

b 12 0

0 b 21

-0 1 -1 0- b 22- 0

19
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which is seeni Lobe satisfied by b -2, b b 2, and b 4. The
model is b11  12 21 22

[ 2x +- 2y]
dX(t) = 2x - 4 ]jt + dW(t).

EXAMPLES OF FLOWS WITH POTENTIALS

We cannot at present solve the equation

3 2  (2  8 (b Ip) 3(b2 p)
ya

for a non-negative summable function p. In the special case that
*[ (b(x,y) b (x,y)] has a potential function *,i.e., 8$o/;x =b 1 and[

* 8"/ 8y =b, then p(x,y) =c e~W Y ,where

00 o

c =1/(f f exp (2*(x,y)) dxdy)
-0 -00

* is the unique steady-state density. For this case, we can construct numerical

examples avoiding simulations.

Example 2

Consider the nonlinear model

dX(t) = [4x3 + 3x - ydt + dW(t).

* The potential function is

*(x,y) =-x 
4 + 3/2 X2 -Xy -gy

2 .

0 Clearly,

lim xi e2*(x,y) 0O and lim y i e2(x,y) 0

*uniformly on bounded sets for every i. Hence we can use the density

p(x,y) = e2X ) to generate some moments numerically and test the method
outlined above. For this model, m~ = = in3 = in2 ="2 0.

So in order to have enough linear relations to determine the "unknown"
parameters in the model

20
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[4alx
3 + 2a2 x + a3Y1

dX(t) =2 J dt + e dW(t),
SLa 3x + 2a4y

we must use at least fourth order moments (i + j = 4).

Besides the equations generated before we add

f -f y3 b2 (x,y) p(x,y) dxdy = -3/2 C2 MO2

These relations would give four equations. We can add two more by assum-
ing that there are modes at (1, -1) and (-1, 1); i.e., bl(1, -1) = 0 and

)i b2 (-1, 1) = 0. Thus we have (assuming is known) the following system:

4 2 -1 0 a1  0

0 0 1 -2 a3  -0

0 0 m1 2m a C
1102 3

4m4 2m m 0 a4  F2
40 20 114

(m20 + 002)

4m31 2m 2 2ml1 0

0 0 m13 2m04 -  -3/2 &c m02

Since the coefficient matrix is known only approximately, we can increase
the accuracy of our estimates by adding relations. As indicated above, the
additional equations need not involve moments but may arise from some other
knowledge we have of the model.

SECTION V

QUALITATIVE ANALYSIS

MULTIPLE NODES

The qualitative analysis of nonlinear stochAstic systems is complicated

by the possibility of steady-state distributions which are not Gaussian. Con-
S sider the one-dimensional model

dX(t) = -X(t)(X 2 (t) - 1) dt + dWt.

21
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The forward equation is

11 a2 + * (x(x2 1)p)
2 3 - (xp. = 0 p

and steady-state is given by

W1+ [x(x 2 
- )p11 0.

Thus

X -4/2 + x

p(x) ce-2 f s
3 - s ds =me

0

Note that p'(x) = (-2x3 + 2x) p(x) = 0 has solutions x = -1, 0, 1. These
critical points can be classified as: -1 and I are local maxima and 0 is
a local minimum. Thus p(x) is the density of a bimodal distribution.

{i The system must linger proportionately longer in neighborhoods of states
-1 and 1 than in neighborhoods of 0. Thus the system might exhibit a kind of
periodic motion visiting alternately neighborhoods of states -1 and I with

,. some expected time. If the system were deterministic (eliminating the noise
term), then the trajectory upon arriving in certain neighborhoods of either
-1 or I would not exit. The long.term behavior of Narkov processes requires

a descriptive apparatus substantially different from the stability analysis
of deterministic systems.

* FIRST PASSAGE TINES

Consider the one-dimensional model dX(t) = b(X(t) dt + e dW(t)). Suppose
x < A. We want to compute the probability that X(t) > B given X(O) = x.

20

In order to do this, we treat 0 as an absorbing boundary and so we must pause
to discuss the corresponding boundary condition.

15 21

Let F(y,t x) = Prob(X(t) < yIX(0) = x) denote the conditional probability
distribution function and J(y,t Ix) the rate at which probability is flowing
in the positive y-direction at y at time t. Then J = -8F/Ot is called the
probability flux and ap/at = 02F/atay = -aJ/8y; i.e.,

J(y,tlx) = b(y) p(y,tlx) - a p(y,t x).

1sibid.

20Matkowsky, B. J. and Schuss, Y., The Exit Problem for Randomly Perturbed
Dynamical Systems,, SIAM J. Appl. Math., 33(1975), pp. 365-382.

2 1Friedman, A., Stochastic Differential Equations and Applications, Academic
Press, 1975.
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The concept of probability flux is useful in formulating the appropriate
boundary condition.

With an absorbing barrier at the Chapman-Kolmogorov equation becomes

p(z,t + slx) - f p(z,tly) p(y,slx) dy.

As before, if uCt,x) is any solution of the backward equation then

f u(O,z) p(z,t + Tix) dx = f u(t,y) p(y,TIx) dy.

One notes that differentiating the left-hand side wrt t or T is equivalent.
Hence, by virtue of the equality, differentiating the right-hand side by t
or T is also equivalent. Thus

u(t,y) p(y,Tlx) dy = f T u(t,y) p(y,Tlx) dy

(Substituting the expression for au/at from the backwards equation into the
right-hand expression, one has)

a2  
y

f [h a a-Yy u(t,y) + b(y) - u(t,y)] p(y,Tx) dy M

(Integrating by parts leads to)

= m a(y u(t,y)) p(y,tlx) + b(y)u(t,y) p(y,tlx) ly =
- M: Y0 = -O

- f {k a T p(y,Tlx) y u(t,y) + (b(y) p(y,Tlx)) u(t,y)} dy

(The probability density is zero at -0o and 0; integrating the first term in
the integrand by parts one has)

- a y p(y,P

a2 .2(by
+ f (k a a-2 p(y,Tlx) - a (by) p(y,tlx))) u(t,y) dy

(Substituting from the forward equation the expression for ap/at into
equation (*) and comparing with the expression directly above, one has)

23
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or J(,x x) u(t,P) = 0. Since in general J(P,TIx) 0 0, then we must require
that u(t,P) = 0, our boundary condition for the backward equation.

Thus the probability that X(t) < 0 given X(O) = x is found by solving

Bu 92u

-= JJ a a2 + b(y) a

u(O,y) = 1 for y <

10 for y >

u(t,P) = 0

Further, 1 - u(t,x) is the proportion of trajectories that reach 0 in 1O,t]
and

- u(t,x) = J(P,tlx).

Let w(tx) = -8/8t u(t,x).. Then differentiating the backward equation
yields

Oww aw! , 8" - =t a X-- + b ( x ) 2 x '

w(t,P) = 6(t),

w(t,-o) = 0,

and w(O,x) = 6(P - x)

and f w(tx) dt is the proportion of trajectories which leave (--,P) eventublly.
0

Let

T = inf (t: X(t) ,X(O) x)

the exit of first passage time and

z(x) = E(T) = f tw(t,x) dt.
0

If Prob (T < *) = 1 or, equivalently

£ w(t,x) dt = 1,
0

24



NCSC TH 339-82

*then

f a ~~)d a 2
8fx f tw(t,x) dt + b(x) x ftw(t,x) dt

0 0 0

t. w(tx) - f w(tx) d
0 0

or

a z" + b(x) z' = -1, z(P) = 0, and z' (-0) = O.

Examples

We want to compare the first passage times from 0 to 2 for the following

models:

1. dX(t) = -2 X(t) dt + & dW(t)

2. dX(t) = -(X3(t) -3 X2 (t) + 2X(t)) dt + e dW(t)

3. dX(t) = -(2X 3 (t) - 5 X2 (t) + 2X(t)) dt + e dW(t)

4. dX(t) = -(4X 3 (t) - 9 X2 (t) + 2X(t)) dt + & dW(t).

Note that b(x) has zeros at 0 and 2 for each of 2 through 4 and a zero between
0 and 2 which is nearer to 0 for 4 than for 3 and nearer for 3 than for 2.
The expected first passage times for the four models are approximately 500,
4, 2, and 1.

In all four models, the tendency for a trajectory in a small enough
neighborhoGd of 0 is to return to 0. For the last three models, a trajectory
to the right of the middle zero of b(x) has a tendency to go to 2. The closer
that zero is to 0 the easier for the random disturbance to push the systm into
the region of attiaction of 2.

SECTION VI

CONTROL PROBLEMS

FEEDBACK CONTROL

The first objective, using an analogy with linear systems, is to control
the given system so the steady-state distribution is unimodal with mode at 0.
A second objective might be to fix moments higher than the first.

25
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Consider a one-dimensional model dX(t) = b(X(t)) dt + t dW(t). If the
model is linear, i.e., b(x) = bx, then the question of stabilizing the system
is trivial. Looking at the deterministic system dX(t) = (b • x(t) + u(t)) dt
ye can choose u~t) = c -x(t) where b + c < 0. In the nonlinear case if we
require u(t) to be of the form u(t) = c - x(t), there might be no such u(t)

which stabilizes the system. However, even if we require that

dX(t) = b(X(t)) dt + & dW(t)

has a steady-state density we can wonder if there is a number co so that the
steady-state density of

dX(t) = (b(X(t)) + c X(t) dt + c dW(t)

is unimodal with mode at 0.

The following examples illustrate the answer to this question.

Example 1. The scaler nonlinear system

dX(t) = [-X(t) (X2 (t) - 1) + c X(t)J dt + dW(t)

has steady-state density

p(x) = m exp(-x-4/2 + (1 + c) x2).

Further,

p'(x) = p(x) • (-2x3 + 2 (1 + c) x)

has exactly one zero if c < -1. Clearly, this generalizes if b(x) can be
differentiated.

Suppose the two-dimensional model

dX(t) [b(x(t)) dt + e dW(t)

Lb 2(X(t)) J
has a potential and b1 (0,O) = b2 (0,0) = 0. Sufficient conditions on a 2x2

matrix C so

[bl(X(t)) +'c11X1(t) + c12X2 (t) 1dX(t) = J1 dt £ dW(t)

1b2 (X(t)) + c2 1XI(t) + c2 2X2 (t)

has a mode at (0,0) are

1. c12  c21
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ab
2. cz < - (0,0)

•Bb 
2

_ 3. c2 < = ey (0,0)
22

3bb 2  ab1
4. [-i- (0,0) + cl ] f[-y (0,0) + c2 2 ] - fLyi (0,0) + c122 > 0.

Example 2. Consider the system

-4X 3 (t) + 3X (t) X (t
dX(t) 1 dt + & dW(t)

1_ () - X ()

whose steady-state density has local maxima at (1, -1) and (-1, 1). The
indicated partials are 8b /8x = -12 x2 + 3, ab /by =-1, Ob /3x = -1, and
ab2 /y = -1. Hence sufficient conditions are c1 1 < -3, c2 2 < 1, c12 = c21'
and (3 + c1)(-1 + c) - (-1 + c )2 > 0. If we choose c c = 0

11 22 12 Ifw hoec12 =C21 =0
c11 = -4, and c2 2 = 0 then bI = -4x

3 
- x and b2 = -y. For these choices,

the controlled system

[-4X3 (t)

L- (t=) dt + e dW(t)

has unimodal steady-state distribution with mode at (0,0). The question of
whether this result can always be obtained is open.

No optimal control problem has been formulated.2 2 23 The formulation
of a significant optimization problem must be preceded by the formulation
of reasonable objectives. This in turn requires more insight into the
qualitative analysis for nonlinear stochastic systems.

2 2Fleming, W. H. and Rishel, R. W., Deterministic and Stochastic Control,
Springer-Verlag, 1975.

23Kushner, H. J., Stochastic Stability and Control, Academic Press, 1967.
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APPENDIX A

THE LINEAR RELATIONS FOR THE PARAMETERS
IN TERMS OF THE MOMENTS
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APPENDIX A

THE LINEAR RELATIONS FOR THE PARAMETERS
IN TERMS OF THE MOMENTS

The starting point for obtaining linear relations for the parameters of
the n-dimensional system is the steady-state forward equation.

a 82n B(b.p)
0a -i- - Y.

i,j=l i axidx j= x

Multiplying by (xk)m and integrating x. from -0 to o for i = 1,2,... ,n, we
obtain

0= a.. f fP
i 0~ ~ = f . l .. (uk) m a-L p (u)du

. f f.. (U k) ex. ud

j=l -0 ax.

Let x. - 0(i # k) and integrate from -0 to * with respect to xk. Theni 1

-' x 82  8 (bkP)
0 fJ" uk ) [Iakk ax ax ] (x, "'.' ukP ..., un)dukdx

Rn -0 k kk

a-kk n (x )m -2 (x )dx - m  f - k (Uk)m-1 aP (x,, ... u , )dukdX)

2 R n )k R n - k ax k k '

- fn(xk)m bk(x) p(x)dx + m f n .k (Uk)m-1 [bkpl(xl, ""' U k' . )d dx
R R -O

a -k m f (xk )  M p(x)dx + m f (x -' a(x)dx)

2 R n kR n k a

- (I + m) f n (xk)m bk(x)p(x)dx

R

m(m2 kk (X) p(x)dx- (+ m)f n(xk )m b(x) dx.
2.. .. .n ( k R n k .knn"
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Or

f (x R XP~xa f (xk M-1 p(x)dx.
R (Xk)m bk(X)p(x)dx = - 2 akk Rn k

On the other hand, for i # k let x. - (j i) and integrate from -

to 0 with respect to x ..

IC

Oa fn I (x k ex f (X1, ... i. ... x )du dx

X.

R -k 3 .L

x. 82~p

00 i U 1xgx (x'"n'"
+: k a f fl (x~ i- ,Xi ... U .. IXn)du dx

fkk (x .) 9( . (x , ... ui  ... x)ud

R i n (Xl "'' ua' '' n i d

x. m8(bIP)

0_f' (xk) Ox (hI ... n, x a )duidx

_m a (xf ..., fu, ... (X du .. dx)d

x.

m ak n (Xk)nM- p(x)dx - " akk n f -x (X, "'' ui, "- dud

+ 11 a.i 5n (Xk)'5 88x-(x)dx - If (xk)"' b (x)p(x)dx

4X. Rnn k-i

If m = 1, then

0 =ik +n k bi(x)p(x)dx + f~ xibk(x)p(x)dx.

A R

r IIfma>i1, then

A-2
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0 a f x M1)~ x+' m n 1)fa f i (x k) m 2 p(xl, ... ,up..x n)du idx

R Rflo

-f (x k) mb i(x)p(x)dx - mn f n(xk) x ib k(x)p(x)dx.
R nR

Or

fn (x k) b .(x)P(x)dx + m f (x k x ib k(x)p(x)dx

RR

A- 3
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